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We study the competition interface between two clusters growing over a random vacant sector of the plane
in a simple setup which allows us to perform formal computations and obtain analytical solutions. We dem-
onstrate that a phase transition occurs for the asymptotic inclination of this interface when the final macro-
scopic shape goes from curved to noncurved. In the first case it is random while in the second one it is
deterministic. We also show that the flat case �stationary growth� is a critical point for the fluctuations: for
curved and flat final profiles the fluctuations are in the Kardar-Parisi-Zhang �KPZ� scale �2/3�; for noncurve
final profile the fluctuations are in the same scale of the fluctuations of the initial conditions, which in our
model are Gaussian �1/2�.
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I. INTRODUCTION

The behavior of the interface of a growing material has
been investigated using the Eden model �1�, ballistic deposi-
tion, and other random systems. Typically, the growing re-
gion converges to an asymptotic deterministic shape and its
fluctuations depend on the geometry of the initial condition
�2,3�. A less well studied phenomenon is the competing
growth of two materials. The interface between two growing
clusters �competition interface� presents a random direction
on the same scale as the deterministic shape �4–6�. In this
paper we describe quite explicitly this phenomenon in a
simple model. On grounds of universality, this will provide a
guide to understanding the interplay between the asymptotics
of the competition interface and the final macroscopic shape
in models with different growth and competition mecha-
nisms.

We determine the inclination of the competition interface
for a growth model called “last passage percolation” in a
random sector of the plane of angle �. The growth interfaces
are mapped into particle configurations of the totally asym-
metric simple exclusion process in one dimension �TASEP�
�7�. Under Euler space-time rescaling, the particle density of
the TASEP converges to a solution of the Burgers equation.
This equation has traveling wave solutions �shocks� corre-
sponding to the case ��180°, and rarefaction fronts corre-
sponding to ��180°. A perturbation at one site of the initial
particle configuration �called a second class particle� follows
a characteristic of the equation or the path of a shock. To
establish our results, we map the competition interface lin-
early onto the path of the second class particle.

II. THE GROWTH MODEL

The random sector is parametrized by the asymptotic
slope of its sides. Let �� �0,1� and �� �0,1� and define a
random path �0= ��0�j�� j�Z�Z2 with �1�0�= �1,0�, �0�0�
= �1,1�, �−1�0�= �0,1� as follows. Starting from �0,1�, walk
one unit up with probability � and one unit left with prob-
ability 1−�, repeatedly, to obtain �0

1= ��0�j�� j�0. Then, start-
ing from �1,0� walk down with probability � and right with
probability 1−� to get �0

2= ��0�j�� j�0. �0
1 has asymptotic ori-

entation ��−1,�� while �0
2 has asymptotic orientation �1

−� ,−��. Let C0 be the sector with boundary �0, containing
the first quadrant; its asymptotic angle �=��,�
� �90° ,270° � is the angle between ��−1,�� and �1−� ,
−��. Notice that �� �90° ,180° � if and only if ���.

The path �0 is the growth interface at time 0. The dynam-
ics are then defined as follows. For each z�C0 and each t
�0, we have a label 	t�z�� �0,1 ,2�. The label is 0 if z is
unoccupied at time t, and is 1 or 2 if z belongs to cluster 1 or
2, respectively. Once occupied, a site remains occupied and
keeps the same value forever. Initially, set 	0�z�=1 for all
z��0

1 , 	0�z�=2 for all z��0
2 and 	0�z�=0 for all z

�C0 \�0. Independently each vacant site z�C0 \�0 becomes
occupied with rate 1 provided z− �1,0� and z− �0,1� are oc-
cupied. Let G�z� be the time at which site z becomes occu-
pied. At this time 	t�z� assumes the value 	t�z̄� where z̄ is the
argument that maximizes G�z− �1,0�� and G�z− �0,1��. Thus
when a site becomes occupied it joins the cluster of which-
ever of its two neighbors �below and to the left� became
occupied more recently. The label of the site �1,1� may be
left ambiguous, but we stipulate that site �1,2� always joins
cluster 1, and site �2,1� always joins cluster 2.

The process �Gt
1 ,Gt

2�, where Gt
k is the set of sites z�C0

such that 	t�z�=k, describes the competing spatial growth
model. The growth interface at time t is the polygonal path �t
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composed of sites z�C0 such that G�z�
 t and G�z
+ �1,1��� t. The competition interface �= ��n�N is defined by
�0= �1,1� and, for n�0, �n+1=�n+ �1,0� if �n+ �1,1�
�G�

1 and �n+1=�n+ �0,1� if �n+ �1,1��G�
2 . Note that �

chooses locally the shorter step to go up or right, so that �n+1
is the argument that minimizes �G��n+ �1,0�� ,G��n

+ �0,1���. This competition interface represents the boundary
between those sites which join cluster 1 and those joining
cluster 2 �see Fig. 1�. The process 
�t�= �I�t� ,J�t�� defined by

�t�=�n for t� �G��n� ,G��n+1�� gives the position of the
last intersecting point between the competition interface �
and the growth interface �t.

In �8� we prove that with probability one

lim
n→�

�n

��n�
= ei�, �1�

where �� �0,90�� is given by

tan � = �
��

�1 − ���1 − ��
if � � �

	1 − U

1 + U

2

if � � � ,

�2�

and U is a random variable uniformly distributed in �1
−2� ,1−2��.

III. SIMPLE EXCLUSION AND SECOND-CLASS
PARTICLES

The totally asymmetric simple exclusion process ��t , t
�0� is a Markov process in the state space �0,1�Z whose
elements are particle configurations. �t�j�=1 indicates a par-
ticle at site j at time t, otherwise �t�j�=0 �a hole is at site j
at time t�. With rate 1, if there is a particle at site j, it at-
tempts to jump to site j+1; if there is a hole at j+1 the jump
occurs, otherwise nothing happens. The basic coupling be-
tween two exclusion processes with initial configurations �0
and �0� is the joint realization ��t ,�t�� obtained by using the
same potential jump times at each site for the two different
initial conditions. Let �0 and �0� be configurations of par-
ticles differing only at site X�0�=0. With the basic coupling,
the configurations at time t differ only at a single site X�t�,
the position of a so-called second-class particle. Such a par-
ticle jumps one step to its right to an empty site with rate 1,
and jumps backwards one step with rate 1 when a �first class�
particle jumps over it.

If �0 is distributed according to the Bernoulli product
measure with density � for j
0 and � for j�0, then the

asymptotic behavior of X�t� shows a phase transition in the
line �=�: with probability one

lim
t→�

X�t�
t

= �1 − � − � if � 
 �

U if � � � ,
�3�

where U is a random variable uniformly distributed in �1
−2� ,1−2�� ��9–11� for the deterministic case and �8,12–14�
for the random case�.

The limits �3� are based on the following hydrodynamic
limits. If �0 is distributed with the product measure with
densities � and � as before, then the macroscopic density
evolution is governed by the Burgers equation

lim
�→0

� �
x�Z

f�x���t/��x� = 

R

f�r�u�r,t� dr �4�

with probability one for all f :R→R with compact support,
where u�r , t� is the solution of the Burgers equation

�u�r,t�
�t

+
�

�r
�u�r,t��1 − u�r,t��� = 0, r � R, t � 0

with initial condition u�r ,0�=� for r
0 and � for r�0. If
�=� the solution is constant, if ��� it is a shock

u�r,t� = �� if r 
 �1 − � − ��t
� if r � �1 − � − ��t ,

�5�

and it is a rarefaction front if ���

u�r,t� = �� if r 
 �1 − 2��t
1
2 − r

2��−�� if �1 − 2��t � r 
 �1 − 2��t

� if r � �1 − 2��t

�6�

��7,15� for initial product measures and �11,16� for initial
measures satisfying �4� with t=0; also �17,18��.

The characteristics v�a , t�, corresponding to the Burgers
equation and emanating from a, are the solutions of dv /dt
=1−2u�v , t� with v�0�=a. The solutions are constant along
the characteristics. When two characteristics carrying a dif-
ferent solution meet, they give rise to a shock. There is only
one characteristic emanating from locations where the initial
data is locally constant and there are infinitely many charac-
teristics when there is a decreasing discontinuity. In particu-
lar, if the initial condition is u�r ,0�=� for r�0 and u�r ,0�
=� for r�0, then the characteristics vr�t� emanating from
the point vr�0�=r are given by vr�t�=r+ �1−2��t if r�0 and
vr�t�=r+ �1−2��t if r�0. For r=0 there are two cases.
When �
�, the characteristics emanating from positive sites
are slower than those emanating from negative sites. They
collide, giving rise to a shock �5� traveling at speed 1−�
−�. When ��� there are infinitely many characteristics
emanating from the origin: for each s� �1−2� ,1−2�� the
line v0�t�=st is a characteristic emanating from 0. The limits
�3� show that the second-class particle follows the character-
istic when there is only one �that is, when �=��, that it
follows the shock when the initial condition has an increas-
ing discontinuity and that it chooses uniformly one of the
characteristics emanating from a decreasing discontinuity.

FIG. 1. Growth and competition interfaces.
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IV. GROWTH AND SIMPLE EXCLUSION

Rost �7� relates the simple exclusion process to the
growth model as follows. Consider initial configurations �0
for the exclusion process in which �0�0�=0 and �0�1�=1.
Elsewhere let �0 be distributed according to the Bernoulli
product measure with density � for j�0 and � for j�1.
Define the initial growth interface �0 by �0�0�= �1,1� and
�0�j�−�0�j−1�= �1−�0�j� ,−�0�j��; then �0 has the same dis-
tribution as before. Label the particles sequentially from
right to left and the holes from left to right, with the conven-
tion that the particle at site 1 and the hole at site 0 are both
labeled 1. Let Pj�0� and Hj�0� , j�Z be the positions of the
particles and holes, respectively, at time 0. The position at
time t of the jth particle Pj�t� and the ith hole Hi�t� are
functions of the variables G�z� with z�C0 \�0 �defined ear-
lier for the growth model� by the following rule: at time
G��i , j��, the jth particle and the ith hole interchange posi-
tions. Disregarding labels and defining �t�Pj�t��
=1, �t�Hj�t��=0, j�Z, the process �t indeed realizes the
exclusion dynamics. At time t the particle configuration �t
and the growth interface �t still satisfy the same relation as
�0 and �0. This connection yields the following shape theo-
rem for the growth model. Almost surely

lim
t→�

�t

t
= ��r,s� � R2:s = h�r�� , �7�

where h�r�=h�,��r� is related to the hydrodynamic limit �5�
and �6� by h��r�=u�r ,1� / �1−u�r ,1��.

V. SECOND CLASS PARTICLES AND COMPETITION
INTERFACES

A key tool in proving �1� and �2� is the observation �13�
that the process given by the difference of the coordinates of
the competition interface I�t�−J�t� behaves exactly as the
second class particle initially put at the origin. To see this
call the particle at site 1 *particle and the hole at site 0 *hole,
and call this couple *pair. The dynamics of the *pair is the
following: it jumps to the right when the *particle jumps to
the right, and it jumps to the left when a particle jumps from
the left onto the *hole. The *pair then behaves as a second
class particle. The only difference is that it occupies two sites
while the second class particle occupies only one. The labels
of the *particle and *hole change with time. At time 0 they
both have label 1 and the labels of the *pair are represented
by the point �0= �1,1�, the initial value of the competition
interface. If, say, G�2,1��G�1,2�, then the *particle jumps
over the second hole before the second particle jumps over
the *hole �see Fig. 2�. In this case, the labels of the *pair at
time G�2,1� are �2,1�, which is exactly the argument that

minimizes �G�2,1� ,G�1,2��; thus, after the first jump of the
*pair, its labels are given by �1. By recurrence, �n gives
exactly the labels of the *pair after its nth jump. Therefore
the labels of the *particle and *hole are J�t� and I�t�, respec-
tively. In addition, J�t�−1 is exactly the number of jumps
that the *pair has made backwards up to time t, and I�t�−1 is
the number of its jumps forwards. This shows that if the
exclusion and the growth process are realized in the same
space, X�t�= I�t�−J�t�. As a consequence of this and �3� we
get the following behavior for 
�t� that implies �1� and �2�.
Almost surely

lim
t→�


�t�
t

= �„�1 − ���1 − ��,��… if � 
 �

1

4
„�U + 1�2,�U − 1�2

… if � � � ,
�8�

where U is a random variable uniformly distributed in �1
−2� ,1−2��.

To prove �8� for ��� recall that P1�t� is the position of
the first particle at time t. Thus J�t� is the number of particles
that at time zero were to the left of P1�0�=1 and at time t are
to the right of X�t�. Therefore, J�t� is equal to the number of
particles between X�t� and P1�t� at time t. By the law of large
numbers, P1�t� / t converges to 1−� and, by �3�, X�t� / t con-
verges to U. Hence J�t� / t converges to the integral of the
solution of the Burgers equation at time 1 �u�r ,1� given by
�6�� in the interval �U ,1−��. Taking f�r�=1[r��U,1−��] in �4�

J�t�
t

=
1

t
�

j=X�t�

P1�t�

�t�j� − → 

U

1−�

u�r,1�dr =
1

4
�1 − U�2.

Analogously, since I�t� is the number of holes to the right of
H1�0�=0 at time zero and to the left of X�t� at time t and
H1�t� / t converges to −� almost surely, we obtain �8� for �
��. For �
� the same argument works by substituting U
above by 1−�−�, the limit position of the second class par-
ticle in this case, and taking the solution u�r ,1� given by �5�.

VI. FLUCTUATIONS

For ��180° the second class particle has Gaussian fluc-
tuations produced by the initial profile �19�. This together
with the relation above implies that under a diffusive scaling
�I�t� ,J�t�� converges to a bidimensional Gaussian distribu-
tion with a nondiagonal covariance matrix computed explic-
itly �8�.

To understand the fluctuations for �
180° we relate the
models to a directed polymer model. For each z�C0 \�0 let
wz=G�z�−max�G�z− �1,0�� ,G�z− �0,1���. Then �wz ,z
�C0 \�0� is a sequence of i.i.d random variables with an
exponential distribution of mean 1. Let ��z ,z�� be the set of
all directed polymers �or up-right paths� �z1 , . . . ,zn� connect-
ing z to z�, and let G�z� ,z� be the maximum over all �
���z� ,z� of t���, the sum of wz along the polymer �. Each
site z has energy −wz, and the polymer � has energy −t���.
Thus −G�z� ,z� is the minimal energy, or ground state, be-
tween z� and z. There exists a unique polymer M�z� ,z� in
��z� ,z� that attains the maximum. We say that the semi-

FIG. 2. Pair representation of second class particle.
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infinite polymer �zn�N is maximizing if for all n�m we have
�zn , . . . ,zm�=M�zn ,zm�. Every semi-infinite maximizing poly-
mer �zn�N has an asymptotic inclination ei� �13�. In the com-
petition model, G�z�=G��0 ,z� and for k=1,2 , G�

k is the set
of sites z such that M��0 ,z� originates from �0

k. Denote by �
the roughening exponent of semi-infinite maximizing poly-
mers.

For �=180° ��=�� the process is stationary and the con-
nection is explicit. Running the process forward and back-
ward we extend G�z� to all z�Z2 ; G+= �G�z� ,z�Z2� and
G−= �−G�−z� ,z�Z2� are identically distributed. We define
the forward competition interface starting at z, �z= ��n

z�N, by
setting �0

z =z and putting �n+1
z equal to the argument of the

minimum between G��n
z + �1,0�� and G��n

z + �0,1��, and the
backward semi-infinite polymer starting at z, Mz= �Mn

z�N, by
setting M0

z =z and putting Mn+1
z equal to the argument of the

maximum between G�Mn
z − �1,0�� and G�Mn

z − �0,1��. Note
that �=��1,1� and that Mz is a semi-infinite maximizing poly-
mer. Together with the duality relation �z�G+�=Mz�G−�, this
shows that the forward competition interface has the same
law as the backward semi-infinite maximizing polymer and,
in particular, they have the same fluctuations, so that �=�.

For ��180° ����� the competition interface � is en-
closed by two semi-infinite maximizing polymers M1 and M2

starting from �0
1 and �0

2, respectively, and with the same in-
clination �8�. Therefore �
� in this case.

VII. CONCLUSIONS

The connections studied above between the competition
interface, the second class particle and maximal polymers fit

into the interplay between the fluctuation statistics and the
global geometry of the growth interface developed by Pra-
hofer and Spohn �3�. If the final macroscopic profile is
curved then the competition interface follows a random di-
rection �characteristic� intersecting the final surface at a point
with nonzero curvature. In this case we have the Kardar-
Parisi-Zhang �KPZ� scaling and the competition interface
gets the transversal fluctuations, indicating the exponent �
=2/3. If the macroscopic profile is not curved we have two
different situations. In the flat case �stationary growth� the
competition interface also follows the characteristics of the
associated hydrodynamic PDE and we still have the KPZ
scaling. In the shock case the competition interface gets the
longitudinal fluctuations which, in this case, are produced by
the Gaussian fluctuations ��=1/2� of the initial profile. On
microscopic grounds one might suggest different rules for
growth and competition. By universality we expect that from
the knowledge of the curvature of the final macroscopic
shape one can infer the asymptotics of the competition inter-
face. This fits with the exponents founded by Derrida and
Dickman �4� in the Eden context since, in this case, the mac-
roscopic profile is curved for angles ��180° �we notice that
in their simulations they have considered periodic initial con-
ditions and so the longitudinal fluctuations in the shock di-
rection are governed by the exponent 1 /3 �3��.
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